Abstract

AbstractSelf similar flow patterns are studied which arise when a cylindrical symmetric strong shock or detonation wave propagates outwards into a gas at rest in which the ambient density varies as the inverse square of the distance from the axis of symmetry along which flows a line current of either zero or finite constant strength. The electrical conductivity of the gas is supposed zero ahead and infinite behind, so that the wave is an ionizing wave. It is shown that self similar solutions exist for both shock and detonation waves for which detailed flow patterns are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.