Abstract

Cerebral blood flow (CBF) decreases across the lifespan, and chronic conditions such as dementia and stroke accelerate this decline. Impaired CBF results in reduced delivery of oxygen and nutrients, which can damage the brain over time. Thus, there is a need to identify lifestyle interventions, including diet and exercise, to maintain CBF with aging and in the presence of chronic disease. In the present study, we used transcranial Doppler ultrasound to record middle cerebral artery velocity (MCAv), a surrogate measure of CBF, during moderate-intensity exercise in sedentary, cognitively normal older adults (n = 90). A multiple linear regression model (F(4, 85) = 3.21, p = 0.02) showed that self-reported omega-3 supplement use significantly moderated the association between age and mean exercising MCAv in these individuals (p = 0.01). Older age was associated with lower exercising MCAv in the group not taking omega-3 supplements, while exercising MCAv showed no decline with increasing age in the group who reported omega-3 supplement use. These findings suggest omega-3 supplementation may have an important role in the preservation of CBF with aging.

Highlights

  • Evidence increasingly suggests that omega-3 polyunsaturated fatty acids promote vasodilation via improved endothelial function and relaxation of vascular smooth muscle cells [1]

  • The major finding of this secondary analysis was that self-reported omega-3 supplementation significantly moderated the effect of age on mean middle cerebral artery velocity (MCAv) during exercise

  • There was a decline in exercising MCAv with increasing age in the group not taking omega-3 supplements, while this age-related decline was not observed in the group reporting omega-3 supplement use

Read more

Summary

Introduction

Evidence increasingly suggests that omega-3 polyunsaturated fatty acids promote vasodilation via improved endothelial function and relaxation of vascular smooth muscle cells [1]. A randomized controlled trial in older adults with mild cognitive impairment showed that omega-3 fatty acid supplementation reduced cognitive and functional decline [5] While this trial did not explore the mechanisms through which omega-3 consumption improved brain function, a previous study found that fish oil supplementation improved the CBF response to hypercapnia and to cognitive stimuli in older adults with borderline hypertension [6], suggesting that omega-3 may act mechanistically by improving blood flow to the brain. These findings are important since the brain receives 15–20% of cardiac output despite comprising only

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.