Abstract

Exhaust gas flow takes a vital position in the assessment of ship exhaust emissions, and it is essential to develop a self-powered and robust exhaust gas flow sensor in such a harsh working environment. In this work, a bearing type triboelectric nanogenerator (B-TENG) for exhaust gas flow sensing is proposed. The rolling of the steel balls on PTFE film leads to an alternative current generated, which realizes self-powered gas flow sensing. The influence of ball materials and numbers is systematically studied, and the B-TENG with six steel balls is confirmed according to the test result. After design optimization, it is successfully applied to monitor the gas flow with the linear correlation coefficient higher than 0.998 and high output voltage from 25 to 106 V within the gas flow of 2.5–14 m/s. Further, the output voltage keeps stable at 70 V under particulate matter concentration of 50–120 mg/m3. And the output performance of the B-TENG after heating at 180 °C for 10 min is also surveyed. Moreover, the mean error of the gas flow velocity by the B-TENG and a commercial gas flow sensor is about 0.73%. The test result shows its robustness and promising perspective in exhaust gas flow sensing. Therefore, the present B-TENG has a great potential to apply for self-powered and robust exhaust gas flow monitoring towards Green Ship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.