Abstract

AbstractPyroelectric materials are very promising for thermal energy harvesting applications. To date, lead‐based systems are the foremost studied materials in this field. A facile and simple metal organic chemical vapor deposition route is applied for the fabrication of lead‐free, high quality, epitaxial Bi(1−x)DyxFeO3 (x = 0, 0.06, 0.08, 0.11) thin films deposited on conductive SrTiO3:Nb (100) single crystal substrates. The films are studied by structural, morphological, compositional, and functional characterization. The correlation between the Dy‐doping amount and the dielectric properties is thoroughly investigated. Unipolar polarization–electric field loops and permittivity measurements show the important impact of Dy on ferroelectric, dielectric, and pyroelectric properties. Dy doping increases considerably the dielectric response, but much more the pyroelectric coefficient, up to a concentration of 8% Dy. The films are self‐poled, which is an ideal situation for pyroelectric applications. The best figure of merit for pyroelectric energy harvesting, FE, is 82 J m−3 K−2, showing a factor increase of 2.6 as compared to the undoped film of the sample series. It constitutes a factor 4.5 improvement as compared to previous results obtained on BiFeO3 based thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.