Abstract

Percolative memristive networks based on self-organized ensembles of silver and gold nanoparticles are synthesized and investigated. Using cyclic voltammetry, pulse and step voltage excitations, we study switching between memristive and capacitive states below the percolation threshold. The resulting systems demonstrate scale-free (self-similar) temporal dynamics, long-term correlations, and synaptic plasticity. The observed plasticity can be manipulated in a controlled manner. The simplified stochastic model of resistance dynamics in memristive networks is testified. A phase field model based on the Cahn-Hilliard and Ginzburg-Landau equations is proposed to describe the dynamics of a self-organized network during the dissolution of filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.