Abstract

Self-organized bistability (SOB) stands as a critical behavior for the systems delicately adjusting themselves to the brink of bistability, characterized by a first-order transition. Its essence lies in the inherent ability of the system to undergo enduring shifts between the coexisting states, achieved through the self-regulation of a controlling parameter. Recently, SOB has been established in a scale-free network as a recurrent transition to a short-living state of global synchronization. Here, we embark on a theoretical exploration that extends the boundaries of the SOB concept on a higher-order network (implicitly embedded microscopically within a simplicial complex) while considering the limitations imposed by coupling constraints. By applying Ott-Antonsen dimensionality reduction in the thermodynamic limit to the higher-order network, we derive SOB requirements under coupling limits that are in good agreement with numerical simulations on systems of finite size. We use continuous synchronization diagrams and statistical data from spontaneous synchronized events to demonstrate the crucial role SOB plays in initiating and terminating temporary synchronized events. We show that under weak-coupling consumption, these spontaneous occurrences closely resemble the statistical traits of the epileptic brain functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.