Abstract

We show that self-organization occurs in the phase dynamics of soliton modelocking in paramet- ric frequency combs. Reduction of the Lugiato-Lefever equation (LLE) to a simpler set of phase equations reveals that this self-organization arises via mechanisms akin to those in the Kuramoto model for synchronization of coupled oscillators. In addition, our simulations show that the phase equations evolve to a broadband phase-locked state, analogous to the soliton formation process in the LLE. Our simplified equations intuitively explain the origin of the pump phase offset in soliton- modelocked parametric frequency combs. They also predict that the phase of the intracavity field undergoes an anti-symmetrization that precedes phase synchronization, and they clarify the role of chaotic states in soliton formation in parametric combs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.