Abstract

There are many different methods to calibrate cellular automata (CA) models for better simulation results of urban land-use changes. However, few studies have been reported on combination of parameter update and error control using local data in CA calibration procedures. This paper presents a self-modifying CA model (SM-CA) that uses the dual ensemble Kalman filter (dual EnKF), which enables the CA model to simultaneously update model parameters and simulation results by merging observation data (local data). We applied the proposed model to simulate urban land-use changes in a 13-year period (1993–2005) in Dongguan City, a rapidly urbanizing region in south China. Simulation results indicate that this model yields better simulation results than the conventional logistic-regression CA and decision-tree CA models. For example, the validation is carried out using cross-tabulation matrix. The simulation results of SM-CA have allocation disagreement of 10.18%, 19.64%, and 30.03% in 1997, 2001, and 2005, respectively, which are 2.12%, 2.47%, and 6% lower than conventional logistic-regression CA models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.