Abstract

In vivo transduction of nondividing cells by human immunodeficiency virus type 1 (HIV-1)-based vectors results in transgene expression that is stable over several months. However, the use of HIV-1 vectors raises concerns about their safety. Here we describe a self-inactivating HIV-1 vector with a 400-nucleotide deletion in the 3' long terminal repeat (LTR). The deletion, which includes the TATA box, abolished the LTR promoter activity but did not affect vector titers or transgene expression in vitro. The self-inactivating vector transduced neurons in vivo as efficiently as a vector with full-length LTRs. The inactivation design achieved in this work improves significantly the biosafety of HIV-derived vectors, as it reduces the likelihood that replication-competent retroviruses will originate in the vector producer and target cells, and hampers recombination with wild-type HIV in an infected host. Moreover, it improves the potential performance of the vector by removing LTR sequences previously associated with transcriptional interference and suppression in vivo and by allowing the construction of more-stringent tissue-specific or regulatable vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.