Abstract

Controlled drug-delivery systems have potential as substitutes for traditional medication systems due to the advantages in safety, efficacy, and patient compliance that these long-acting dosage forms provide. In this context, the present study focus on the development of self-implanted hyaluronic acid (HA) tiny needles that encapsulate ivermectin (IVM)-poly (lactic-co-glycolic acid) (PLGA) microparticles for controlled transdermal IVM release to treat parasitic diseases. The fabricated tiny needles involved matching portable applicator have potentially able for self-administration by patients without intense pain or complexity of current controlled-release devices. The biodegradable IVM-loaded PLGA microparticles were prepared and encapsulated within the tip of dissolving HA tiny needles to achieve high delivery efficiency. The drug loading of tiny needles might be controlled by varying the repeat time of filling or pressing processes. In-vitro tests showed that the tiny needles have sufficient mechanical strength to be inserted into skin within seconds and, next rapidly dissolved to release the loaded drug carriers into subcutaneous tissues for intradermal sustained IVM release. With the in-vivo test in rats, the insertion site recovered barrier property within 3 h. In comparison to traditional hypodermic injection or implantation of controlled-release systems, the proposed polymer tiny needles can be considered as a promising device for controlled transdermal drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.