Abstract
In recent years, shape memory polymers (SMPs) and self-healing polymers (SHPs) have been research hotspots in the field of smart polymers owing to their unique stimulus response mechanisms. Previous research on SHPs has primarily focused on contact repair. However, in instances where substantial cracks occur during practical use, autonomous closure becomes challenging, impeding effective repair. By integration of the shape memory effect (SME) with SHPs, physical wound closure can be achieved via the SME, facilitating subsequent chemical/physical repair processes and enhancing self-healing effectiveness. This article reviews key findings from previous research on shape memory-assisted self-healing (SMASH) materials and addresses the challenges and opportunities for future investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.