Abstract

We summarize the general formalism describing surface flows in three-dimensional space in a form which is suitable for various astrophysical applications. We then apply the formalism to the analysis of non-radial perturbations of self-gravitating spherical fluid shells. Spherically symmetric gravitating shells (or bubbles) have been used in numerous model problems especially in general relativity and cosmology. A radially oscillating shell was recently suggested as a model for a variable cosmic object. Within Newtonian gravity we show that self-gravitating static fluid shells are unstable with respect to linear non-radial perturbations. Only shells (bubbles) with a negative mass (or with a charge the repulsion of which is compensated by a tension) are stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.