Abstract
For a Schwarzchild black hole of mass $M$, we consider a test particle falling from rest at infinity and becoming trapped, at late time, on the unstable circular orbit of radius $r=4GM/c^2$. When the particle is endowed with a small mass, $\mu\ll M$, it experiences an effective gravitational self-force, whose conservative piece shifts the critical value of the angular momentum and the frequency of the asymptotic circular orbit away from their geodesic values. By directly integrating the self-force along the orbit (ignoring radiative dissipation), we numerically calculate these shifts to $O(\mu/M)$. Our numerical values are found to be in agreement with estimates first made within the Effective One Body formalism, and with predictions of the first law of black-hole-binary mechanics (as applied to the asymptotic circular orbit). Our calculation is based on a time-domain integration of the Lorenz-gauge perturbation equations, and it is a first such calculation for an unbound orbit. We tackle several technical difficulties specific to unbound orbits, illustrating how these may be handled in more general cases of unbound motion. Our method paves the way to calculations of the self-force along hyperbolic-type scattering orbits. Such orbits can probe the two-body potential down to the "light ring", and could thus supply strong-field calibration data for eccentricity-dependent terms in the Effective One Body model of merging binaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.