Abstract

The mathematical framework of Relativistic Schrodinger Theory (RST) is generalized in order to include the self-interactions of the particles as an integral part of the theory (i.e. in a non-perturbative way). The extended theory admits a Lagrangean formulation where the Noether theorems confirm the existence of the conservation laws for charge and energy–momentum which were originally deduced directly from the dynamical equations. The generalized RST dynamics is applied to the case of some heavy helium-like ions, ranging from germanium (Z=32) to bismuth (Z=83), in order to compute the interaction energy of the two electrons in their ground-state. The present inclusion of the electron self-energies into RST yields a better agreement of the theoretical predictions with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.