Abstract

Recently, Jelínek derived that the number of self-dual interval orders of reduced size $n$ is twice the number of row-Fishburn matrices of size $n$ by using generating functions. In this paper, we present a bijective proof of this relation by establishing a bijection between two variations of upper-triangular matrices of nonnegative integers. Using the bijection, we provide a combinatorial proof of the refined relations between self-dual Fishburn matrices and row-Fishburn matrices in answer to a problem proposed by Jelínek.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.