Abstract

In-Sn-O nanostructures with rectangular cross-sectional rod-like, sword-like, and bowling pin-like morphologies were successfully synthesized through self-catalytic growth. Mixed metallic In and Sn powders were used as source materials, and no catalyst layer was pre-coated on the substrates. The distance between the substrate and the source materials affected the size of the Sn-rich alloy particles during crystal growth in a quartz tube. This caused In-Sn-O nanostructures with various morphologies to form. An X-ray photoelectron spectroscope and a transmittance electron microscope with an energy-dispersive X-ray spectrometer were used to investigate the elemental binding states and compositions of the as-synthesized nanostructures. The Sn doping and oxygen vacancies in the In2O3 crystals corresponded to the blue-green and yellow-orange emission bands of the nanostructures, respectively.

Highlights

  • Oxide materials are promising constituents for various scientific applications because of their versatile physical properties [1]

  • This paper presents the detailed investigation of nanostructures that were produced through self-catalytic growth and reports the related microstructures and self-catalytic growth mechanisms of the In-Sn-O nanostructures

  • Nanostructure formation was achieved through selfcatalytic growth

Read more

Summary

Introduction

Oxide materials are promising constituents for various scientific applications because of their versatile physical properties [1]. Oxide materials in low-dimensional forms are demanded for manufacturing small devices. One-dimensional (1D) metal-oxide nanostructures with a high aspect ratio and good crystallinity are promising as building blocks for functional device architecture. Indium oxide (In2O3) is a wide bandgap semiconductor and has been used in various optoelectronic and electronic devices [2,3]. In2O3 semiconductors are usually doped with other elements to increase their functionalities [2,4,5,6]. Sn-doped In2O3 has attracted a considerable amount of attention because of its superior transparency in the visible spectral region and low electrical resistivity. Sn-doped In2O3 is the transparent conducting oxide most widely used in scientific and industrial applications.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.