Abstract

This article is concerned with self-avoiding walks (SAW) on $$\mathbb {Z}^{d}$$ that are subject to a self-attraction. The attraction, which rewards instances of adjacent parallel edges, introduces difficulties that are not present in ordinary SAW. Ueltschi has shown how to overcome these difficulties for sufficiently regular infinite-range step distributions and weak self-attractions (Ueltschi in Probab Theory Relat Fields 124(2):189–203, 2002). This article considers the case of bounded step distributions. For weak self-attractions we show that the connective constant exists, and, in $$d\ge 5$$ , carry out a lace expansion analysis to prove the mean-field behaviour of the critical two-point function, hereby addressing a problem posed by den Hollander (Random Polymers, vol. 1974. Springer-Verlag, Berlin, 2009).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.