Abstract

Proteins binding to Ribonucleic Acid (RNA) inside cells are called RNA-binding proteins (RBP), which play a crucial role in gene regulation. The identification of RNA-protein binding sites helps to understand the function of RBP better. Although many computational methods have been developed to predict RNA-protein binding sites, their prediction accuracy on small sample datasets needs improvement. To overcome this limitation, we propose a novel model called SA-Net, which utilizes k-mer embedding to encode RNA sequences and a self-attention-based neural network to extract sequence features. K-mer embedding assists the model to discover significant subsequence fragments associated with binding sites. The self-attention mechanism captures contextual information from the entire input sequence globally, performing well in small sample sequence learning. Experimental results demonstrate that SA-Net attains state-of-the-art results on the RBP-24 dataset. We find that 4-mer embedding aids the model to achieve optimal performance. We also show that the self-attention network outperforms the commonly used CNN and CNN-BLSTM models in sequence feature extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.