Abstract

At present, strategies to disperse hydrophobic molecules in water without altering their chemical structures include conventional surfactant-based micellar and vesicular systems, encapsulation into water dispersible polymeric nanoparticles, and loading onto the surface of various metal nanoparticles. Here, we report a simple and low cost platform to incorporate hydrophobic molecules into a stable water dispersible nanostructure that can significantly increase the stability of the encapsulated materials. The platform is based on the incorporation of hydrophobic molecules into the self-assembled complex of gadolinium ion (Gd3+), sodium dodecyl sulfate (SDS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) called GdSH. After being incorporated, the two model hydrophobic dyes, curcumin and curcumin borondifluoride show approximately 50% and 30% improved stability, respectively. Investigation of the self-assembled 10–14 multilayered 60nm spheres with inter-layer distances of 4.25nm indicates coordination of SDS and HEPES with Gd3+. Incorporation of the hydrophobic molecules into the multilayered spheres results in reduction of the interlayer distance of the multilayer spheres to 4.17nm, suggesting enhanced packing of the hydrophobic chain of SDS and HEPES around the Gd3+. The incorporation of the two curcuminoids into the self-assembled complex also causes an increase in fluorescence quantum yield of the two dyes, thus suggesting spatial confinement of the packed dye molecules. The better cellular uptake of the nanoparticles is responsible for the expected enhancement in fluorescence image of the encapsulated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.