Abstract

Procollagen I was isolated from cultured skin fibroblasts from a proband who was homozygous for a mutation in the COL1A2 gene that substituted a serine codon for a glycine codon at position 661 of the alpha 2(I) chain. The procollagen I was cleaved to pCcollagen I by procollagen N-proteinase and the pCcollagen I was used as a substrate for assay of self-assembly of collagen I into fibrils. The mutated pCcollagen I was cleaved to collagen I by procollagen C-proteinase at the same rate as control pCcollagen I. However, self-assembly of the mutated collagen I had a lag period that was 15-fold greater than the lag period observed with normal collagen I under the same conditions. Also, self-assembly of the mutated collagen I had a propagation rate of about one-fourth of the propagation rate of normal collagen I. In addition, the critical concentration for fibril assembly was slightly increased. Rotary shadowing electron microscopy of the mutated procollagen I did not reveal any increased flexibility of the triple helix as was seen previously with two mutated procollagens I in which there were substitutions of cysteine for glycine residues in the alpha 1(I) chain (Vogel, B. E., Doelz, R., Kadler, K. E., Hojima, Y., Engel, J., and Prockop, D. J. (1988) J. Biol. Chem. 263, 19249-19255; Lightfoot, S. J., Holmes, D. F., Brass, A., Grant, M. E., Byers, P. H., and Kadler, K. E. (1992) J. Biol. Chem. 267, 25521-25528). However, morphometric analysis by dark-field light microscopy and electron microscopy showed that the fibrils formed from the mutated collagen I appeared thicker in diameter than the fibrils formed from the normal collagen I. Comparison of the results with similar data on four mutated procollagens previously studied raised the possibility that mutations which markedly increase the critical concentration of fibril assembly produce more severe phenotypes than mutations which change other parameters of fibril assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.