Abstract

1-Eicosanethiolate molecules form relatively weak bonds with the surface of InSb(100) limiting the order of the self-assembled monolayer despite the long length of the alkyl chain. Heating to only 225°C in vacuum completely desorbed the eicosanethiolate layer from the surface based on X-ray photoelectron spectroscopy. Even after deposition times as long as 20h in ethanol, the asymmetric methylene stretch was at 2925cm−1 in the attenuated total reflection Fourier transform infrared spectrum, which is indicative of alkane chains that are incompletely ordered. Atomic force microscopy images combined with ellipsometry showed that the eicosanethiolate layer conformed to the rough InSb(100) starting surface (2.3±0.2nm RMS). The reoxidation kinetics in air of InSb(100) and InSb(111)B covered with eicosanethiolate layers was the same despite the lower surface roughness of the latter (0.64±0.14nm). The bond that the S head group makes with the substrate is the primary factor that determines the cohesiveness of the molecules on the surface. Although interactions between the alkane chains in the layer are sufficient to form a self-assembled layer, the fluidity of the molecules in the layer compromised the chemical passivation of the surface resulting in reoxidation in air after 20min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.