Abstract
We consider depletion effects of a pear-shaped colloidal particle in a hard-sphere solvent for two different model realizations of the pear-shaped colloidal particle. The two models are the pear hard Gaussian overlap (PHGO) particles and the hard pears of revolution (HPR). The motivation for this study is to provide a microscopic understanding for the substantially different mesoscopic self-assembly properties of these pear-shaped colloids, in dense suspensions, that have been reported in the previous studies. This is done by determining their differing depletion attractions via Monte Carlo simulations of PHGO and HPR particles in a pool of hard spheres and comparing them with excluded volume calculations of numerically obtained ideal configurations on the microscopic level. While the HPR model behaves as predicted by the analysis of excluded volumes, the PHGO model showcases a preference for splay between neighboring particles, which can be attributed to the special non-additive characteristics of the PHGO contact function. Lastly, we propose a potentially experimentally realizable pear-shaped particle model, the non-additive hard pear of revolution model, which is based on the HPR model but also features non-additive traits similar to those of PHGO particles to mimic their depletion behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.