Abstract

Self-assembling cyclic systems have been of interest to researchers for over a decade now, and their wide variety applications have been explored from electronic devices to medicinal purposes. But still their discovery for newer innovative applications remains as valuable as before. In this study, ab initio Hartree–Fock molecular orbital calculations have been performed on peptidic and peptidomimetic cyclic compounds to identify characteristics required in compounds for efficient self-aggregation. The effect of these characteristics in determining the pore size and length of nanotube has been studied. Effect of backbone and substituents on environment of outer and inner surface and carriage properties has been studied in detail. Self-aggregating compounds (Ala)12 and (Ala)10 have been predicted to form a tubular structure with dimensions in nanoscale. They have been predicted to work as novel drug carriers having inert outer wall and inner pore. A peptidic self-aggregating compound (Ala)12 has been studied and suggested as carrier for antibiotic gentamicin to exemplify carriage properties of the designed compound. Such novel self-aggregatory systems are expected to help simplify the drug delivery process and increase bioavailability of various drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.