Abstract
A methoxy‐poly(ethylene glycol)‐block‐poly(acrylamide‐co‐acrylonitrile) (mPEG‐b‐P(AAm‐co‐AN)) amphiphilic copolymer exhibiting upper critical solution temperature (UCST) behavior is synthesized, and micelles from this copolymer are fabricated. It is found that the thermal responses of these micelles are tunable through balancing the hydrophobic/hydrophilic blocks in the copolymer. The size of the doxorubicin (DOX)‐loaded micelles is dependent on the hydrophobic interaction as well as hydrogen bonding between polymer and drug molecules. As a proof of concept, the drug release behavior is studied in vitro, and the cumulative release of DOX increases at temperature above the UCST of blank micelles. 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) assays indicate that these polymers are non‐toxic towards human hepatic carcinoma cells (Bel 7402 cells) as well as human embryonic hepatocytes (L02 cells). DOX‐loaded micelles could effectively enter Bel 7402 cells in 2 h, and display much lower half inhibitory concentration compared with free DOX. These micelles may be exploited as a promising drug carrier for cancer therapeutics. image
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.