Abstract
AbstractThis review of the current status of conducting polymers will focus on recent progress which demonstrates that the initial promise of the late 1970's has become reality. Conducting polymers are now available as materials with truly unique properties: They combine the important electronic and optical properties of semiconductors and metals with the attractive mechanical properties and processing advantages of polymers. Conducting polymer blends based upon polyaniline (PANI) are a new class of materials in which the threshold for the onset of electrical conductivity (σ) can be reduced to volume fractions below 1%, well below that required for classical percolation (16% by volume for globular conducting objects dispersed in an insulating matrix in three dimensions). The origin of this remarkably low threshold for the onset of electrical conductivity is the self‐assembled network morphology of the PANI polyblends which forms during the course of liquid‐liquid separation. Since the average density of the conducting network near threshold is small, the conductivity increases smoothly and continuously over many orders of magnitude as the concentration of conducting polymer increases above threshold. The low percolation threshold and the continuous increase of σ(f) above threshold are particularly important; as a result of this combination, conducting polyblends can be reproducibly fabricated with controlled levels of electrical conductivity while retaining the desired mechanical properties of the matrix polymer.1‐3)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.