Abstract

Self-assembled nanostructures of amphiphilic block copolymers hold great promise for applications in nanomedicine. Blending polymers provides an effective way to produce multifunctional drug delivery vesicles at micro- and nanoscales. Here we investigate the self-assembly of homopolymer and diblock copolymer blends in a selective solvent by using the self-consistent field method. It is found that self-assembled nanostructures of different sizes and shapes (e.g., vesicles, circle- and line-like micelles, and their mixtures) can be obtained by varying the concentration and composition of the diblock copolymer. As the chain length or concentration of the homopolymer changes, morphological transitions may occur among the different nanostructures. On the basis of a number of simulations under various conditions, a phase diagram of aggregate morphologies is constructed with respect to the mixture ratio and the homopolymer chain length. The theoretical method presented here could be used to design novel nanomedicine carriers and to optimize their sizes and shapes for specific biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.