Abstract
The packaging technology for transitions to dielectric waveguides in the frequency range above 100 GHz is complex and must be highly precise, and the waveguides are usually permanently connected. This letter presents a transition from a monolithic microwave integrated circuit (MMIC) to a flexible dielectric waveguide at $G$ -Band (140–220 GHz), which is self-aligning and, thus, reduces the requirements for packaging accuracy. Furthermore, the transition is mechanically decoupled to avoid mechanical stress to the MMIC and to reconnect it arbitrarily often. A patch radiator on a quartz-glass carrier is excited by a coupler on the MMIC. It feeds the $\mathrm {HE_{11}}$ mode into a rigid, high-permittivity dielectric dome, which increases the coupling efficiency. The flexible dielectric waveguide is placed above the dome and fixed with Rohacell half shells. The minimum insertion loss measured with a back-end-of-line (BEOL) MMIC is 3.0 dB at 168 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.