Abstract
The self-aggregation of Methylene Blue [MB] (1×10−6–4×10−4 M) in water and in aqueous solutions of Bu4NBr (0.1–0.3 M) and urea (0.1–4 M) has been investigated by recording electronic spectra in the wavelength range 550 to 700 nm. Analysis of the spectral data yielded the dimer dissociation constant, and individual characteristic monomer and dimer spectra. By applying the exciton model for the first time, the interaction energy between the MB molecules in the dimer species has been evaluated. Further, information about the dimer geometry and the twist angle between the dipoles of the MB molecules in the dimer species has been obtained. Similar data have also been obtained for solutions of MB in aqueous urea and Bu4NBr solutions. The significant observation is the change in the dimer geometry from sandwich type to end-on-end type in the presence of urea and Bu4NBr. It is observed that the contribution to the interaction energy is mainly from van der Waal's type and dispersion forces, in addition to short-range forces involving multipoles. However, the contribution from hydrogen-bonding interactions between MB and water molecules is found to be significantly low. It is proposed that water structural effects and hydrophobic interactions are the major factors in the phenomenon of aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.