Abstract

AbstractOne drawback of wheeled robots is their inferiority to conquer large obstacles and perform well on complicated terrains, which limits their application in rescue missions. To provide a solution to this issue, an ant-like six-wheeled reconfigurable robot, called AntiBot, is proposed in this paper. The AntiBot has a Sarrus reconfiguration body, a three-rocker-leg passive suspension, and mechanical adaptable obstacle-climbing wheeled legs. In this paper, we demonstrate through simulations and experiments that this robot can change the position of its center of mass actively to improve its obstacle-crossing capability. The geometric and static stability conditions for obstacle crossing of the robot are derived and formulated, and numerical simulations are conducted to find the feasible region of the robot’s configuration in obstacle crossing. In addition, a self-adaptive obstacle-crossing algorithm is proposed to improve the robot’s obstacle-crossing performance. A physical prototype is developed, and using it, a series of experiments are carried out to verify the effectiveness of the proposed self-adaptive obstacle-crossing algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.