Abstract

This work reports on the synthesis and characterization of two novel conjugated polymers consisting of selenophene substituted benzo[1,2-b:4,5-b′]dithiophene (SeBDT) donor, and dithienothiadiazole[3,4-c]pyridine(DTPyT)-P1 or thieno[3,4]pyrroledione(TPD)-P2 acceptors. The synthesized polymers are characterized for the significant photophysical prerequisites essential for organic electronics such as strong and broad optical absorption, thermal stability, and compatible highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. The polymers are thermally stable up to 280–370 °C, and the optical band gaps for P1, P2 calculated from their film absorption edges are found to be 1.53 and 1.84 eV, respectively. In addition, the electrochemical studies of P1, P2 reveal the HOMO and LUMO energy levels of −5.02,-5.04 eV, and −3.49, −3.20 eV, respectively, suggesting these materials to be potential candidates for the applications in organic electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.