Abstract

Heterojunctions and controllable anionic vacancies are perceived to be powerful means of ameliorating the performance of sodium-ion batteries assignable to their unique physical and chemical properties. However, the mechanism by which heterojunction and vacancy structures affect sodium-ion battery storage remains to be systemically explored. In this study, the Se doped CoS2@CoS1.035@Carbon (Se-CoS2@CoS1.035@C) heterostructure with anion vacancy was synthesized by a one-step calcination. These heterostructures with lower metal oxidation states and anionic vacancies exhibit exceptional Na+ storage performance (554.3 mA h g−1 after 1500 cycles at 5.0 A g−1). Both electrochemical tests and theoretical calculations demonstrate excellent pseudocapacitive behavior and enhanced Na+ adsorption during discharge because of anionic vacancies and Se doping. Additionally, introducing weaker Co-Se bonds and extending Co-S and Co-Se bonds reduce binding energies, which effectively accelerates the conversion reaction. Our findings provide a feasible way to rationally design and facilely prepare heterostructured anode materials with rich anionic vacancies for sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.