Abstract

The photoelectrochemical behavior of TiO2 thin film electrodes, photocatalytically modified with Se islands, is described. The TiO2 thin films were electrodeposited on transparent conducting oxide glass substrates. The resultant electrode forms a n-TiO2/p-Se "photochemical diode" which, in turn, contacts an electrolyte phase. Both transient photocurrent profiles (in response to excitation light that is switched on or off) and steady-state current-potential curves in response to chopped irradiation are considered. We show that the relative dominance of the contributions from the TiO2 and Se components to the overall response of the photochemical diode/electrolyte junction crucially depends on the wavelength distribution of the excitation light source. A simple equivalent circuit representation of this junction is presented, comprised of a photodiode in parallel with two photodiodes connected in series back-to-back. Simulations of the transient and steady-state photoelectrochemical response of this system are presented, and are shown to be in good agreement with the corresponding experimental profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.