Abstract

The biofortification of leafy vegetables with selenium (Se) is a good way to increase human dietary Se intake. In addition, selenium delays plant senescence by enhancing the antioxidant capacity of plant tissues, decreasing postharvest losses. We investigated the effects of selenium addition on the production and quality of sweet basil (Ocimum basilicum) leaves of two harvesting phases, hereafter referred to as cuts, during the crop cycle. Plants were hydroponically grown and treated with 0 (control), 4, 8 and 12 mg Se L−1 as selenate. To evaluate the growth, nutritional value and quality of the basil leaves, selected qualitative parameters were determined at harvest and after five days of storage. Application of Se at varying rates (4, 8 and 12 mg L−1) was associated with an increased leaf selenium concentration in the first, but not the second cut. The application of Se significantly affected the antioxidant capacity as well as the total phenol and rosmarinic acid contents at harvest. The reduction in ethylene production observed in the plants at 4 mg Se L−1 after five days of storage suggests that this Se treatment could be used to prolong and enhance the shelf-life of basil. The daily consumption of 10 g of Se-enriched basil leaves, which, as an example, are contained in a single portion of Italian pesto sauce, would also satisfy the recommended selenium supplementation in humans.

Highlights

  • Sweet basil (Ocimum basilicum L.) is an annual aromatic herbal plant belonging to the family of Lamiaceae

  • The Se concentration was calculated on a fresh weight basis in order to evaluate the effect of the daily consumption of basil leaves enriched with Se

  • Seedlings were transferred to a heated glasshouse and placed into separate hydroponic systems, each consisting of a polystyrene tray floating in a 50 L plastic tank filled with nutrient solution

Read more

Summary

Introduction

Sweet basil (Ocimum basilicum L.) is an annual aromatic herbal plant belonging to the family of Lamiaceae. Due to the high content of essential oils, phenolic compounds, flavonoids [1] and substances with anti-bacterial [2], anti-mycotic [3] and antioxidant activities, basil has pharmacological properties and is used in medicine. Rosmarinic acid is the main phenolic compound found in basil and, together with vitamin E, they have the highest antioxidant activity. Other minor phenolic compounds such as caffeic and ferulic acid are present in basil leaves [1]. Antioxidant compounds, due to active oxygen species and lipid peroxidation, play an important role in counteracting diseases related to oxidative stress [4]. The leaf content of these compounds, together with the essential oil content, are important parameters to evaluate the quality of basil leaves

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.