Abstract

Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model is created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. A total of 24 pigs are divided into two equal groups, which were fed a diet with either 0.007mg kg-1 Se or 0.3mg kg-1 Se for 16 weeks. Se deficiency causes cardiac oxidative stress by blocking glutathione and thioredoxin systems and increases thioredoxin domain-containing protein S-nitrosylation. Energy production is disordered, as free fatty acids are overloaded, the tricarboxylic acid cycle is strengthened, and three respiratory chain proteins enhance S-nitrosylation. Excess free fatty acids lead to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and causes an increase in malondialdehyde. Moreover, increased palmitic acid enhances de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiates inflammation via cytosolic DNA-sensing pathways, which activates downstream interferon regulatory factor 7 and nuclear factor kappaB. The present study identifies a lipid metabolic vulnerability and inflammation initiation pathway via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.