Abstract

Reinforced cementitious structures in nuclear waste repositories will act as barriers that limit the mobility of radionuclides (RNs) in case of eventual leakage. CEM-V/A cement, a ternary blended cement with blast furnace slag (BFS) and fly ash (FA), could be qualified and used in nuclear waste disposal. Chemical interactions between the cement and RNs are critical but not completely understood. Here, we combined wet chemistry methods, synchrotron-based X-ray techniques, and thermodynamic modeling to explore redox interactions and nonredox sorption processes in simulated steel-reinforced CEM-V/A hydration systems using selenite as a molecular probe. Among all of the steel corrosion products analyzed, only the addition of Fe0 can obviously enhance the reducing ability of cement toward selenite. In comparison, steel corrosion products showed stronger reducing power in the absence of cement hydrates. Selenium K-edge X-ray absorption spectroscopy (XAS) revealed that selenite immobilization mechanisms included nonredox inner-/outer-sphere complexations and reductive precipitations of FeSe and/or Se(0). Importantly, the hydrated pristine cement showed a good reducing ability, driven by ferrous phases and (bi)sulfides (as shown by sulfur K-edge XAS) originated from BFS and FA. The overall redox potential imposed by hydrated CEM-V/A was determined, hinting to a redox shift in underground cementitious structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.