Abstract

We used temperature programmed reaction spectroscopy (TPRS) and molecular beam reflectivity measurements to investigate the initial dissociation of n-butane isotopologues on PdO(101) and determine kinetic parameters governing the selectivity of initial C-H(D) bond cleavage. We observe differences in the reactivity of the n-butane isotopologues on PdO(101) due to kinetic isotope effects, and find that the initial dissociation probability decreases with increasing surface temperature for each isotopologue. We performed an analysis of the dissociation kinetics using a model that is based on a precursor-mediated mechanism for n-butane dissociation and enables quantification of kinetic parameters for selective C-H bond cleavage by considering differences in the reactivity among the n-butane isotopologues. From the analysis, we estimate that 49% of the n-butane molecules which react during TPRS do so through 1° C-H bond cleavage when the initial coverage of n-butane lies between ∼40% and 100% of the saturation coverage of the molecular precursor state. For dissociation in the limit of zero coverage, we estimate that the conditional probability for 1° C-H bond cleavage is equal to ∼87% and varies only weakly with surface temperature from 300 K to 400 K. Analysis of the temperature dependent rate data further predicts that the barrier for 1° C-H bond cleavage is 3.5 kJ mol(-1) lower than that for 2° C-H bond cleavage for n-butane dissociation on PdO(101) in the limit of zero coverage. Our results provide evidence that the selectivity for 1° C-H bond cleavage on PdO(101) increases as the n-butane coverage decreases below ∼40% of the saturation value. We speculate that intermolecular interactions among the n-butane species are responsible for the apparent coverage dependence of the C-H bond selectivity for n-butane dissociation on PdO(101).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.