Abstract
It is well established that the cochlear nucleus (CN) of developing species is susceptible to loss of synaptic connections from the auditory periphery. Less information is known about how de-afferentation affects the adult auditory system. We investigated the effects of de-afferentation to the adult CN by mechanical compression. This experimental model is quantifiable and highly reproducible. Five weeks after mechanical compression to the axons of the auditory neurons, the total number of neurons in the CN was evaluated using un-biased stereological methods. A region-specific degeneration of neurons in the dorsal cochlear nucleus (DCN) and posteroventral cochlear nucleus (PVCN) by 50% was found. Degeneration of neurons in the anteroventral cochlear nucleus (AVCN) was not found. An imbalance between excitatory and inhibitory synaptic transmission after de-afferentation may have played a crucial role in the development of neuronal cell demise in the CN. The occurrence of a region-specific loss of adult CN neurons illustrates the importance of evaluating all regions of the CN to investigate the effects of de-afferentation. Thus, this experimental model may be promising to obtain not only the basic knowledge on auditory nerve/CN degeneration but also the information relevant to the application of cochlear or auditory brainstem implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.