Abstract

Porous carbon composites containing varying La contents were synthesized and studied for the sorption of phosphate. The phosphate sorption capacities increased with increasing La content and showed an almost complete La consumption efficiency (P/La molar ratio of 0.936) for the composite containing a La(OH)3/porous carbon mass ratio of 0.1 (La0.1-PC). Phosphate sorption by these composite materials occurred through precipitation of LaPO4 supported by PXRD, XPS and EDS analyses. Kinetic studies revealed that phosphate sorption by the La0.1-PC composite was rapid and reached equilibrium within 1h compared to the composites containing higher mass ratio of La(OH)3. The sorption capacity of phosphate was not reduced in the presence 20mM chloride and 20mM sulfate, but was disturbed by 20mM carbonate. The phosphate sorption in the presence of 25mg/L humic acid was maintained along with the adsorption of dissolved humic acid by electrostatic adsorption onto the carbon support. Interestingly, the phosphate sorption capacity in seawater was twice that in fresh water, likely because the Ca2+ and Mg2+ ions in seawater enhanced the precipitation of phosphate on the surface of La in the La-PC composite. Column experiments verified that the La0.1-PC composite was effective for the continuous treatment of phosphate. The current outcome suggests that the La-PC composite can be used as a multifunctional sorbent for the remediation of phosphate along with alkaline metal ions (Ca2+ and Mg2+) as well as the removal of humic substances in wastewaters. Moreover, the spent sorbent could be repurposed as a phosphate plant fertilizer, where it would reduce the cost of disposal and increase the commercial value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.