Abstract

Modified biochars has great potential for removing heavy metals from aquatic environments, but the removal of heavy metals by biochars is usually significantly affected by the co-presence of the macro amount of metal ions, such as Ca. Enhancing the ion exchange capacity of biochar by increasing its alkali metal content is a very prospective method to improve its selectivity. In this paper, MgO loaded biochar (MBC) was synthesized by co-pyrolysis of soybean straw and MgCl2·6H2O for selective remove Pb and Cd from calcium-rich wastewater. MBC exhibited excellent selective adsorption performance for Pb and Cd in calcium-rich wastewater due to the successful loading of MgO. The adsorption capacities of MBC for Pb and Cd were 582.57 and 167.40 mg/g, and the removal efficiency of Ca below 2.5% with an initial concentration of 800 mg/L. The ion exchange capacities of Pb and Cd enhanced almost 27 and 23 times than BC. By analyzing the results of BET, XRD, SEM-EDS, XPS and FTIR, the adsorption mechanisms of MBC were mainly including ion exchange, precipitation with minerals, and interaction with oxygen-containing functional groups. The easy preparation method and high selective adsorption capacity makes MBC an ideal alternative for efficiently selective removal Pb and Cd from calcium-rich wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.