Abstract
Carboxysomes are closed polyhedral cellular microcompartments that increase the efficiency of carbon fixation in autotrophic bacteria. Carboxysome shells consist of small proteins that form hexameric units with semipermeable central pores containing binding sites for anions. This feature is thought to selectively allow access to RuBisCO enzymes inside the carboxysome by HCO3- (the dominant form of CO2 in the aqueous solution at pH 7.4) but not O2, which leads to a nonproductive reaction. To test this hypothesis, here we use molecular dynamics simulations to characterize the energetics and permeability of CO2, O2, and HCO3- through the central pores of two different shell proteins, namely, CsoS1A of α-carboxysome and CcmK4 of β-carboxysome shells. We find that the central pores are in fact selectively permeable to anions such as HCO3-, as predicted by the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.