Abstract

The base-free selective catalytic oxidation of n-butanol by O2 in an aqueous phase has been studied using Au-Pd bimetallic nanoparticles supported on titania. Au-Pd/TiO2 catalysts were prepared by different methods: wet impregnation, physical mixing, deposition-precipitation and sol immobilisation. The sol immobilisation technique, which used polyvinyl alcohol (PVA) as the stabilizing agent, gave the catalyst with the smallest average particle size and the highest stable activity and selectivity towards butyric acid. Increasing the amount of PVA resulted in a decrease in the size of the nanoparticles. However, it also reduced activity by limiting the accessibility of reactants to the active sites. Heating the catalyst to reflux with water at 90 °C for 1 h was the best method to enhance the surface exposure of the nanoparticles without affecting their size, as determined by TEM, X-ray photoelectron spectroscopy and CO chemisorption analysis. This catalyst was not only active and selective towards butyric acid but was also stable under the operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.