Abstract

This work is focused on the modelling, analysis and optimization of industrial ethylene oxide production in a packed bed reactor. The aim is to identify the critical variables that maximize the reactor productivity in an existing facility without compromising personnel safety and equipment integrity. The chemical reactions involved are highly exothermic making the internal temperature control of this unit a challenging task. Temperature excursions at dangerous levels have been experienced due to variations in composition and temperature of fresh feed to the reactor. Therefore, the prediction of dynamic temperature and composition profiles in the reactor are important for its safe operation. The model we developed incorporates catalyst deactivation and the effect of an inhibitory agent: 1,2-dichloroethene. The model predictions were found to be in good agreement with the plant data. Our model-based optimization studies show that the optimal set point for the inlet coolant temperature is suitable for preventing reactor hot spots and maximizing ethylene oxide selectivity. The heat integration aspects of the process were addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.