Abstract

In the present work, an analytical methodology based on molecularly imprinted solid-phase extraction (MISPE) has been developed for the determination of bisphenol A (BPA) in environmental and food samples. In order to select the optimum material, a combinatorial library of molecularly imprinted polymers in small-scale (mini-MIPs) was prepared using BPA as template. Different monomers (methacrylic acid or 4-vinylpyridine), crosslinkers (ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate) and porogens (methanol, acetonitrile or toluene) were used leading to 24 different polymerisation mixtures. After BPA removal, the ability of mini-MIPs to recognise BPA was evaluated by equilibrium rebinding-elution experiments. The copolymer of 4-vinylpyridine (4-VP) and trimethylolpropane trimethacrylate (TRIM) prepared in toluene showed the higher affinity for the template. Subsequently, a scaled-up version of the optimum polymer was prepared and used in the development of MISPE procedures for the extraction of BPA. The optimised MISPE protocols were successfully applied to the selective extraction of BPA from soils and aqueous canned peas samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.