Abstract

ABSTRACTPresent tissue engineering practice requires porous, bioresorbable scaffolds to serve as temporary 3D templates to guide cell attachment, differentiation, and proliferation. Recent research suggests that scaffold material and internal architecture significantly influence regenerate tissue structure and function. However, lack of versatile biomaterials processing methods have slowed progress towards fully testing these findings. Our research investigates using selective laser sintering (SLS) to fabricate bone tissue engineering scaffolds. Using SLS, we have fabricated polycaprolactone (PCL) and polycaprolactone/tri-calcium phosphate composite scaffolds. We report on scaffold design and fabrication, mechanical property measurements, and structural characterization via optical microscopy and micro-computed tomography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.