Abstract
In order to develop a non-standard method for determining the resistance to fracture and damage of pipeline materials, a new geometry of ring-shaped specimens with sharp notches or cracks has been defined. The need to develop a new method for testing of the specimens cut from the pipes arises due to the difficulties in determination of fracture mechanics parameters on thin-walled pressure pipelines, especially those with a smaller cross-section, by application of the standard procedures/specimens. Previous studies dealing with the topic of pipeline testing by non-standard methods are presented in the introductory part of the paper. In the experimental part of the research, tests on PRNT (Pipe Ring Notched Tension) and SENT (Single Edge Notched Tension) specimens are performed. Samples of these specimens were produced by SLS (Selective Laser Sintering) technique of additive production from PA12 (polyamide PA 2200) material. For the purpose of this study, a tool that is protected at the national level (in Serbia) as intellectual property is used for testing of the ring-shaped PRNT specimens. Tensile testing of both types of specimens is monitored by Aramis GOM 2M system; its operation is based on the method of digital image correlation, DIC. Additionally, finite element analyses are conducted on the PRNT and SENT geometries, enabling the calculation of the fracture mechanics parameter – Stress intensity factor K. It is concluded that the presented procedure based on the PRNT specimen has a good potential for use as a non-standard method for fracture resistance examination of pipeline materials. It can be performed on the specimens cut directly from the pipes (new or from exploitation). The dependence of the fracture resistance on the stress concentrator size is not pronounced, which means that the results depend dominantly on the material properties, rather than on geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.