Abstract

Na +/K +ATPase is a transport membrane protein which contains the functional receptor for digitalis compounds. In this work we compare the inhibition curves of Na +/K +ATPase measured by the inhibition of 86Rb uptake in human red blood cells by cardiac glycosides and by an endogenous digitalis like factor (EDLF) extracted from human newborn cord blood. The curves of Na +/K +TPase inhibition show a monophasic shape for ouabain, strophantidin, digitoxin, proscillaridin and EDLF whereas a biphasic shape for ouabagenin, digoxin, digoxigenin and digitoxigenin. All the drugs are potent inhibitors of erythrocyte Na +/K +ATPase with an IC50 ranging from 1.8×10 −9M to 1.4×10 −11M for the higher affinity binding site and from 1.8×10 −6M to 5.5×10 −9M for the lower affinity site. Digitoxigenin is the most active showing the higher active site at 1.4×10 −11M. Ouabain and digoxin have higher affinity compared with their corresponding genins, while digitoxigenin shows a binding site with higher affinity than the respective cardiac glycosides. The increased affinity of the drugs to Na +/K +ATPase may be related to a lipophilic region in correspondence of the carbons 10, 9, 11, 12, 13 of the steroid nucleus, situated in the opposite side with respect of the C-OH-14. The comparison of the inhibition curves and the HPLC profile of newborn EDLF and of the investigated cardenolides suggest that EDLF may be a compound identical or very similar to ouabain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.