Abstract

Well-aligned good-quality carbon nanotube (CNT) array was grown on silicon substrate by atmospheric pressure chemical vapor deposition (APCVD) through SiO2 masking. First, the patterned substrate was pretreated with NH3 and then CNTs were synthesized at 800 °C using Ni as the catalyst, acetylene (C2H2) as the carbon source material and N2 as the carrier gas. Effects of the NH3-pretreatment time, the flow ratio of [C2H2]/[NH3] and the CNT growth time on the qualities of CNT array were analyzed in detail. It was found that good-quality CNTs with an average length of around 15 μm could be grown by pretreating the Si substrate with NH3 for 10 min and then conducting the CNT growth with a flow ratio of [C2H2]/[NH3] = 30/100. Furthermore, the field emission property of CNT array was investigated using a diode structure. It was found that the turn-on electric field decreased with increasing CNT length. The turn-on electric field as low as about 2 V/μm with an emission current density of 10 μA/cm2 was achieved for a CNT-array diode with the tube length near 18 μm. For the same device, the emission current density could be elevated to 10 mA/cm2 with the applied voltage of 3.26 V/μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.