Abstract

Herein, we report highly efficient carbon supported Ni-MoO2 heterostructured catalysts for the electrochemical hydrogenation (ECH) of phenol in 0.10 M aqueous sulfuric acid (pH 0.7) at 60 °C. Highest yields for cyclohexanol and cyclohexanone of 95 % and 86 % with faradaic efficiencies of ∼50 % are obtained with catalysts bearing high and low densities of oxygen vacancy (Ov ) sites, respectively. In situ diffuse reflectance infrared spectroscopy and density functional theory calculations reveal that the enhanced phenol adsorption strength is responsible for the superior catalytic efficiency. Furthermore, 1-cyclohexene-1-ol is an important intermediate. Its hydrogenation route and hence the final product are affected by the Ov density. This work opens a promising avenue to the rational design of advanced electrocatalysts for the upgrading of phenolic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.