Abstract

We report on the first successful demonstration of selective deuteron acceleration by the target normal sheath acceleration mechanism in which the normally overwhelming proton and carbon ion contaminant signals are suppressed by orders of magnitude relative to the deuteron signal. The deuterium ions originated from a layer of heavy ice that was deposited on to the rear surface of a 500 nm thick membrane of Si3N4 and Al. Our data show that the measured spectrum of ions produced by heavy ice targets is comprised of ∼99% deuterium ions. With a laser pulse of approximately 0.5 J, 120 fs duration, and ∼5×1018Wcm-2 mean intensity, the maximum recorded deuterium ion energy and yield normal to the target rear surface were 3.5 MeV and 1.2×1012sr−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.