Abstract

In the present study, we developed a disposable aptamer-based biosensor for rapid, sensitive, and reliable detection of acetamiprid (ACE). To improve the sensitivity of the aptasensor, poly-5-amino-2-mercapto-1,3,4-thiadiazole [P(AMT)] and gold nanoparticles (AuNPs) were progressively electrodeposited on the screen-printed electrode (SPE) surface by using cyclic voltammetry (CV) technique. For the determination of ACE, thiol-modified primary aptamer (Apt1) was selected by using the SELEX method and immobilized on the surface of the P(AMT) and AuNPs-modified SPE (SPE/P(AMT)/AuNPs) via AuS bonding. Then, the surface-bound aptamer was incubated with ACE for 45Min. After that, the biotin-labeled aptamer 2 (Apt2) was interacted with the ACE, then the enzyme-labeled step was performed. In this step, alkaline phosphatase (ALP) was bound to the surface through the interaction between Apt2 labeled with biotin and streptavidin (strep)-ALP conjugate. The determination of ACE was achieved by measuring the oxidation signal of α-naphthol, which is formed on the electrode surface through the interaction of ALP with α-naphthyl phosphate. The working range of the developed aptasensor was determined as 5×10-12 -5×10-10 molL-1 with a low limit of detection (1.5pmolL-1 ). It was also found that the proposed aptasensor possessed great advantages such as low cost, good selectivity, and good reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.